Introduction
When it comes to preparing for system upgrades, IT professionals face the challenge of ensuring compatibility with new operating systems. This is particularly pertinent with the transition to Windows 11, where hardware compatibility plays a significant role. A PowerShell script designed to assess this compatibility streamlines the process, providing clear, actionable insights.
Background
The script under discussion is a PowerShell tool designed for evaluating a computer’s readiness for an upgrade to Windows 11. In the IT sector, ensuring hardware is compatible with new software is critical. This is especially true for Managed Service Providers (MSPs) who oversee multiple clients with diverse hardware environments. The script automates the evaluation process, saving time and reducing the risk of manual errors.
The script:
#Requires -Version 5.1 <# .SYNOPSIS Checks the computer if is capable of upgrading to Windows 11. .DESCRIPTION Checks the computer if is capable of upgrading to Windows 11 and returns the results. .EXAMPLE No Parameters Needed. Will return an exit code of 0 if the computer is capable. Will return an exit code of 1 if the computer is not capable. Will return an exit code of -1 if the computer is undetermined. Will return an exit code of -2 if the computer failed to run the check. .EXAMPLE -CustomField "Windows11Upgrade" Will attempt to set the example custom field named "Windows11Upgrade" with one of the possible results: Capable Not Capable Undetermined Failed To Run .NOTES Minimum OS Architecture Supported: Windows 10 Release Notes: Renamed script and added Script Variable support. Also replaced Get-WmiObject with Get-CimInstance. By using this script, you indicate your acceptance of the following legal terms as well as our Terms of Use at https://www.ninjaone.com/terms-of-use. Ownership Rights: NinjaOne owns and will continue to own all right, title, and interest in and to the script (including the copyright). NinjaOne is giving you a limited license to use the script in accordance with these legal terms. Use Limitation: You may only use the script for your legitimate personal or internal business purposes, and you may not share the script with another party. Republication Prohibition: Under no circumstances are you permitted to re-publish the script in any script library or website belonging to or under the control of any other software provider. Warranty Disclaimer: The script is provided “as is” and “as available”, without warranty of any kind. NinjaOne makes no promise or guarantee that the script will be free from defects or that it will meet your specific needs or expectations. Assumption of Risk: Your use of the script is at your own risk. You acknowledge that there are certain inherent risks in using the script, and you understand and assume each of those risks. Waiver and Release: You will not hold NinjaOne responsible for any adverse or unintended consequences resulting from your use of the script, and you waive any legal or equitable rights or remedies you may have against NinjaOne relating to your use of the script. EULA: If you are a NinjaOne customer, your use of the script is subject to the End User License Agreement applicable to you (EULA). #> [CmdletBinding()] param ( [Parameter()] [string]$CustomField ) begin { if ($env:customFieldName -and $env:customFieldName -notlike "null") { $CustomField = $env:customFieldName } function Get-HardwareReadiness() { # Modified copy of https://aka.ms/HWReadinessScript minus the signature, as of 7/26/2023. # Only modification was replacing Get-WmiObject with Get-CimInstance for PowerShell 7 compatibility # Source Microsoft article: https://techcommunity.microsoft.com/t5/microsoft-endpoint-manager-blog/understanding-readiness-for-windows-11-with-microsoft-endpoint/ba-p/2770866 #============================================================================================================================= # # Script Name: HardwareReadiness.ps1 # Description: Verifies the hardware compliance. Return code 0 for success. # In case of failure, returns non zero error code along with error message. # This script is not supported under any Microsoft standard support program or service and is distributed under the MIT license # Copyright (C) 2021 Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, # modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software # is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #============================================================================================================================= $exitCode = 0 [int]$MinOSDiskSizeGB = 64 [int]$MinMemoryGB = 4 [Uint32]$MinClockSpeedMHz = 1000 [Uint32]$MinLogicalCores = 2 [Uint16]$RequiredAddressWidth = 64 $PASS_STRING = "PASS" $FAIL_STRING = "FAIL" $FAILED_TO_RUN_STRING = "FAILED TO RUN" $UNDETERMINED_CAPS_STRING = "UNDETERMINED" $UNDETERMINED_STRING = "Undetermined" $CAPABLE_STRING = "Capable" $NOT_CAPABLE_STRING = "Not capable" $CAPABLE_CAPS_STRING = "CAPABLE" $NOT_CAPABLE_CAPS_STRING = "NOT CAPABLE" $STORAGE_STRING = "Storage" $OS_DISK_SIZE_STRING = "OSDiskSize" $MEMORY_STRING = "Memory" $SYSTEM_MEMORY_STRING = "System_Memory" $GB_UNIT_STRING = "GB" $TPM_STRING = "TPM" $TPM_VERSION_STRING = "TPMVersion" $PROCESSOR_STRING = "Processor" $SECUREBOOT_STRING = "SecureBoot" $I7_7820HQ_CPU_STRING = "i7-7820hq CPU" # 0=name of check, 1=attribute checked, 2=value, 3=PASS/FAIL/UNDETERMINED $logFormat = '{0}: {1}={2}. {3}; ' # 0=name of check, 1=attribute checked, 2=value, 3=unit of the value, 4=PASS/FAIL/UNDETERMINED $logFormatWithUnit = '{0}: {1}={2}{3}. {4}; ' # 0=name of check. $logFormatReturnReason = '{0}, ' # 0=exception. $logFormatException = '{0}; ' # 0=name of check, 1= attribute checked and its value, 2=PASS/FAIL/UNDETERMINED $logFormatWithBlob = '{0}: {1}. {2}; ' # return returnCode is -1 when an exception is thrown. 1 if the value does not meet requirements. 0 if successful. -2 default, script didn't run. $outObject = @{ returnCode = -2; returnResult = $FAILED_TO_RUN_STRING; returnReason = ""; logging = "" } # NOT CAPABLE(1) state takes precedence over UNDETERMINED(-1) state function Private:UpdateReturnCode { param( [Parameter(Mandatory = $true)] [ValidateRange(-2, 1)] [int] $ReturnCode ) Switch ($ReturnCode) { 0 { if ($outObject.returnCode -eq -2) { $outObject.returnCode = $ReturnCode } } 1 { $outObject.returnCode = $ReturnCode } -1 { if ($outObject.returnCode -ne 1) { $outObject.returnCode = $ReturnCode } } } } $Source = @" using Microsoft.Win32; using System; using System.Runtime.InteropServices; public class CpuFamilyResult { public bool IsValid { get; set; } public string Message { get; set; } } public class CpuFamily { [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public ushort ProcessorArchitecture; ushort Reserved; public uint PageSize; public IntPtr MinimumApplicationAddress; public IntPtr MaximumApplicationAddress; public IntPtr ActiveProcessorMask; public uint NumberOfProcessors; public uint ProcessorType; public uint AllocationGranularity; public ushort ProcessorLevel; public ushort ProcessorRevision; } [DllImport("kernel32.dll")] internal static extern void GetNativeSystemInfo(ref SYSTEM_INFO lpSystemInfo); public enum ProcessorFeature : uint { ARM_SUPPORTED_INSTRUCTIONS = 34 } [DllImport("kernel32.dll")] [return: MarshalAs(UnmanagedType.Bool)] static extern bool IsProcessorFeaturePresent(ProcessorFeature processorFeature); private const ushort PROCESSOR_ARCHITECTURE_X86 = 0; private const ushort PROCESSOR_ARCHITECTURE_ARM64 = 12; private const ushort PROCESSOR_ARCHITECTURE_X64 = 9; private const string INTEL_MANUFACTURER = "GenuineIntel"; private const string AMD_MANUFACTURER = "AuthenticAMD"; private const string QUALCOMM_MANUFACTURER = "Qualcomm Technologies Inc"; public static CpuFamilyResult Validate(string manufacturer, ushort processorArchitecture) { CpuFamilyResult cpuFamilyResult = new CpuFamilyResult(); if (string.IsNullOrWhiteSpace(manufacturer)) { cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = "Manufacturer is null or empty"; return cpuFamilyResult; } string registryPath = "HKEY_LOCAL_MACHINE\\Hardware\\Description\\System\\CentralProcessor\\0"; SYSTEM_INFO sysInfo = new SYSTEM_INFO(); GetNativeSystemInfo(ref sysInfo); switch (processorArchitecture) { case PROCESSOR_ARCHITECTURE_ARM64: if (manufacturer.Equals(QUALCOMM_MANUFACTURER, StringComparison.OrdinalIgnoreCase)) { bool isArmv81Supported = IsProcessorFeaturePresent(ProcessorFeature.ARM_SUPPORTED_INSTRUCTIONS); if (!isArmv81Supported) { string registryName = "CP 4030"; long registryValue = (long)Registry.GetValue(registryPath, registryName, -1); long atomicResult = (registryValue >> 20) & 0xF; if (atomicResult >= 2) { isArmv81Supported = true; } } cpuFamilyResult.IsValid = isArmv81Supported; cpuFamilyResult.Message = isArmv81Supported ? "" : "Processor does not implement ARM v8.1 atomic instruction"; } else { cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = "The processor isn't currently supported for Windows 11"; } break; case PROCESSOR_ARCHITECTURE_X64: case PROCESSOR_ARCHITECTURE_X86: int cpuFamily = sysInfo.ProcessorLevel; int cpuModel = (sysInfo.ProcessorRevision >> 8) & 0xFF; int cpuStepping = sysInfo.ProcessorRevision & 0xFF; if (manufacturer.Equals(INTEL_MANUFACTURER, StringComparison.OrdinalIgnoreCase)) { try { cpuFamilyResult.IsValid = true; cpuFamilyResult.Message = ""; if (cpuFamily >= 6 && cpuModel <= 95 && !(cpuFamily == 6 && cpuModel == 85)) { cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = ""; } else if (cpuFamily == 6 && (cpuModel == 142 || cpuModel == 158) && cpuStepping == 9) { string registryName = "Platform Specific Field 1"; int registryValue = (int)Registry.GetValue(registryPath, registryName, -1); if ((cpuModel == 142 && registryValue != 16) || (cpuModel == 158 && registryValue != 8)) { cpuFamilyResult.IsValid = false; } cpuFamilyResult.Message = "PlatformId " + registryValue; } } catch (Exception ex) { cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = "Exception:" + ex.GetType().Name; } } else if (manufacturer.Equals(AMD_MANUFACTURER, StringComparison.OrdinalIgnoreCase)) { cpuFamilyResult.IsValid = true; cpuFamilyResult.Message = ""; if (cpuFamily < 23 || (cpuFamily == 23 && (cpuModel == 1 || cpuModel == 17))) { cpuFamilyResult.IsValid = false; } } else { cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = "Unsupported Manufacturer: " + manufacturer + ", Architecture: " + processorArchitecture + ", CPUFamily: " + sysInfo.ProcessorLevel + ", ProcessorRevision: " + sysInfo.ProcessorRevision; } break; default: cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = "Unsupported CPU category. Manufacturer: " + manufacturer + ", Architecture: " + processorArchitecture + ", CPUFamily: " + sysInfo.ProcessorLevel + ", ProcessorRevision: " + sysInfo.ProcessorRevision; break; } return cpuFamilyResult; } } "@ # Storage try { $osDrive = Get-CimInstance -Class Win32_OperatingSystem | Select-Object -Property SystemDrive $osDriveSize = Get-CimInstance -Class Win32_LogicalDisk -Filter "DeviceID='$($osDrive.SystemDrive)'" | Select-Object @{Name = "SizeGB"; Expression = { $_.Size / 1GB -as [int] } } if ($null -eq $osDriveSize) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $STORAGE_STRING $outObject.logging += $logFormatWithBlob -f $STORAGE_STRING, "Storage is null", $FAIL_STRING $exitCode = 1 } elseif ($osDriveSize.SizeGB -lt $MinOSDiskSizeGB) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $STORAGE_STRING $outObject.logging += $logFormatWithUnit -f $STORAGE_STRING, $OS_DISK_SIZE_STRING, ($osDriveSize.SizeGB), $GB_UNIT_STRING, $FAIL_STRING $exitCode = 1 } else { $outObject.logging += $logFormatWithUnit -f $STORAGE_STRING, $OS_DISK_SIZE_STRING, ($osDriveSize.SizeGB), $GB_UNIT_STRING, $PASS_STRING UpdateReturnCode -ReturnCode 0 } } catch { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormat -f $STORAGE_STRING, $OS_DISK_SIZE_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } # Memory (bytes) try { $memory = Get-CimInstance Win32_PhysicalMemory | Measure-Object -Property Capacity -Sum | Select-Object @{Name = "SizeGB"; Expression = { $_.Sum / 1GB -as [int] } } if ($null -eq $memory) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $MEMORY_STRING $outObject.logging += $logFormatWithBlob -f $MEMORY_STRING, "Memory is null", $FAIL_STRING $exitCode = 1 } elseif ($memory.SizeGB -lt $MinMemoryGB) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $MEMORY_STRING $outObject.logging += $logFormatWithUnit -f $MEMORY_STRING, $SYSTEM_MEMORY_STRING, ($memory.SizeGB), $GB_UNIT_STRING, $FAIL_STRING $exitCode = 1 } else { $outObject.logging += $logFormatWithUnit -f $MEMORY_STRING, $SYSTEM_MEMORY_STRING, ($memory.SizeGB), $GB_UNIT_STRING, $PASS_STRING UpdateReturnCode -ReturnCode 0 } } catch { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormat -f $MEMORY_STRING, $SYSTEM_MEMORY_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } # TPM try { $tpm = Get-Tpm if ($null -eq $tpm) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $TPM_STRING $outObject.logging += $logFormatWithBlob -f $TPM_STRING, "TPM is null", $FAIL_STRING $exitCode = 1 } elseif ($tpm.TpmPresent) { $tpmVersion = Get-CimInstance -Class Win32_Tpm -Namespace root\CIMV2\Security\MicrosoftTpm | Select-Object -Property SpecVersion if ($null -eq $tpmVersion.SpecVersion) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $TPM_STRING $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, "null", $FAIL_STRING $exitCode = 1 } $majorVersion = $tpmVersion.SpecVersion.Split(",")[0] -as [int] if ($majorVersion -lt 2) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $TPM_STRING $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, ($tpmVersion.SpecVersion), $FAIL_STRING $exitCode = 1 } else { $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, ($tpmVersion.SpecVersion), $PASS_STRING UpdateReturnCode -ReturnCode 0 } } else { if ($tpm.GetType().Name -eq "String") { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f $tpm } else { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $TPM_STRING $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, ($tpm.TpmPresent), $FAIL_STRING } $exitCode = 1 } } catch { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } # CPU Details $cpuDetails; try { $cpuDetails = @(Get-CimInstance -Class Win32_Processor)[0] if ($null -eq $cpuDetails) { UpdateReturnCode -ReturnCode 1 $exitCode = 1 $outObject.returnReason += $logFormatReturnReason -f $PROCESSOR_STRING $outObject.logging += $logFormatWithBlob -f $PROCESSOR_STRING, "CpuDetails is null", $FAIL_STRING } else { $processorCheckFailed = $false # AddressWidth if ($null -eq $cpuDetails.AddressWidth -or $cpuDetails.AddressWidth -ne $RequiredAddressWidth) { UpdateReturnCode -ReturnCode 1 $processorCheckFailed = $true $exitCode = 1 } # ClockSpeed is in MHz if ($null -eq $cpuDetails.MaxClockSpeed -or $cpuDetails.MaxClockSpeed -le $MinClockSpeedMHz) { UpdateReturnCode -ReturnCode 1; $processorCheckFailed = $true $exitCode = 1 } # Number of Logical Cores if ($null -eq $cpuDetails.NumberOfLogicalProcessors -or $cpuDetails.NumberOfLogicalProcessors -lt $MinLogicalCores) { UpdateReturnCode -ReturnCode 1 $processorCheckFailed = $true $exitCode = 1 } # CPU Family Add-Type -TypeDefinition $Source $cpuFamilyResult = [CpuFamily]::Validate([String]$cpuDetails.Manufacturer, [uint16]$cpuDetails.Architecture) $cpuDetailsLog = "{AddressWidth=$($cpuDetails.AddressWidth); MaxClockSpeed=$($cpuDetails.MaxClockSpeed); NumberOfLogicalCores=$($cpuDetails.NumberOfLogicalProcessors); Manufacturer=$($cpuDetails.Manufacturer); Caption=$($cpuDetails.Caption); $($cpuFamilyResult.Message)}" if (!$cpuFamilyResult.IsValid) { UpdateReturnCode -ReturnCode 1 $processorCheckFailed = $true $exitCode = 1 } if ($processorCheckFailed) { $outObject.returnReason += $logFormatReturnReason -f $PROCESSOR_STRING $outObject.logging += $logFormatWithBlob -f $PROCESSOR_STRING, ($cpuDetailsLog), $FAIL_STRING } else { $outObject.logging += $logFormatWithBlob -f $PROCESSOR_STRING, ($cpuDetailsLog), $PASS_STRING UpdateReturnCode -ReturnCode 0 } } } catch { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormat -f $PROCESSOR_STRING, $PROCESSOR_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } # SecureBoot try { $isSecureBootEnabled = Confirm-SecureBootUEFI $outObject.logging += $logFormatWithBlob -f $SECUREBOOT_STRING, $CAPABLE_STRING, $PASS_STRING UpdateReturnCode -ReturnCode 0 } catch [System.PlatformNotSupportedException] { # PlatformNotSupportedException "Cmdlet not supported on this platform." - SecureBoot is not supported or is non-UEFI computer. UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $SECUREBOOT_STRING $outObject.logging += $logFormatWithBlob -f $SECUREBOOT_STRING, $NOT_CAPABLE_STRING, $FAIL_STRING $exitCode = 1 } catch [System.UnauthorizedAccessException] { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormatWithBlob -f $SECUREBOOT_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } catch { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormatWithBlob -f $SECUREBOOT_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } # i7-7820hq CPU try { $supportedDevices = @('surface studio 2', 'precision 5520') $systemInfo = @(Get-CimInstance -Class Win32_ComputerSystem)[0] if ($null -ne $cpuDetails) { if ($cpuDetails.Name -match 'i7-7820hq cpu @ 2.90ghz') { $modelOrSKUCheckLog = $systemInfo.Model.Trim() if ($supportedDevices -contains $modelOrSKUCheckLog) { $outObject.logging += $logFormatWithBlob -f $I7_7820HQ_CPU_STRING, $modelOrSKUCheckLog, $PASS_STRING $outObject.returnCode = 0 $exitCode = 0 } } } } catch { if ($outObject.returnCode -ne 0) { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormatWithBlob -f $I7_7820HQ_CPU_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } } Switch ($outObject.returnCode) { 0 { $outObject.returnResult = $CAPABLE_CAPS_STRING } 1 { $outObject.returnResult = $NOT_CAPABLE_CAPS_STRING } -1 { $outObject.returnResult = $UNDETERMINED_CAPS_STRING } -2 { $outObject.returnResult = $FAILED_TO_RUN_STRING } } $outObject | ConvertTo-Json -Compress } } process { $Result = Get-HardwareReadiness | Select-Object -Unique | ConvertFrom-Json if ($CustomField -and -not [string]::IsNullOrEmpty($CustomField) -and -not [string]::IsNullOrWhiteSpace($CustomField)) { Switch ($Result.returnCode) { 0 { Ninja-Property-Set -Name $CustomField -Value "Capable" } 1 { Ninja-Property-Set -Name $CustomField -Value "Not Capable" } -1 { Ninja-Property-Set -Name $CustomField -Value "Undetermined" } -2 { Ninja-Property-Set -Name $CustomField -Value "Failed To Run" } default { Ninja-Property-Set -Name $CustomField -Value "Unknown" } } } # Print Return Result Write-Host "Result: $($Result.returnResult)" exit $Result.returnCode } end { }
Detailed breakdown
The script operates in several key steps:
- Environment setup: It begins by setting up parameters and environment variables. It checks if a custom field name is provided and initializes functions.
- Hardware readiness function: The core of the script is the Get-HardwareReadiness function. This function verifies various hardware aspects like storage, memory, TPM (Trusted Platform Module), CPU details, and secure boot status. It uses PowerShell cmdlets like Get-CimInstance and custom code blocks for detailed checks.
- Evaluation logic: For each hardware component, the script checks if the system meets the minimum requirements for Windows 11. These checks include storage size, memory capacity, TPM version, CPU architecture and speed, and secure boot capability.
- Result handling: Based on these checks, the script sets a return code and result, which can be ‘Capable’, ‘Not Capable’, ‘Undetermined’, or ‘Failed To Run’.
- Custom field assignment: If a custom field parameter is used, the script assigns the result to this field.
- Output: Finally, the script outputs the result and exits with the corresponding return code.
Potential use cases
An MSP could use this script to quickly assess which client machines are ready for a Windows 11 upgrade. For example, before deploying a company-wide upgrade, the MSP could run this script across all machines to identify those needing hardware upgrades.
Comparisons
Traditionally, checking for OS compatibility involved manually verifying hardware specs or using separate tools. This script consolidates these checks into a single automated process, offering efficiency and accuracy over manual methods.
FAQs
Q1: Is this script compatible with all Windows versions?
A1: The script is designed for Windows 10 systems and above.
Q2: What happens if the TPM chip is not present?
A2: The script will return a ‘Not Capable’ status if the TPM chip is missing or incompatible.
Q3: Can this script be run on multiple machines at once?
A3: Yes, it can be integrated into larger automation workflows to run on multiple machines.
Implications
The results from this script have significant implications for IT security and planning. Non-compliant machines might be at risk of security vulnerabilities, and planning for hardware upgrades becomes crucial.
Recommendations
- Regularly run this script as part of maintenance routines.
- Use the results for strategic planning of hardware upgrades.
- Integrate the script into broader IT management workflows for efficiency.
Automate critical IT tasks such as Windows system compatibility checking with advanced tools.
→ Discover IT automation with NinjaOne.
Final thoughts
The transition to new operating systems like Windows 11 is a crucial step in maintaining up-to-date and secure IT environments. Tools like NinjaOne, which streamline and automate IT management processes, become invaluable in this context. By incorporating scripts like the one discussed, MSPs and IT professionals can ensure a smooth, efficient transition to Windows 11, keeping systems secure and up-to-date.