Introduction
Lorsqu’il s’agit de préparer les mises à niveau des systèmes, les professionnels de l’informatique doivent relever le défi de la compatibilité avec les nouveaux systèmes d’exploitation. Ceci est particulièrement pertinent pour la transition vers Windows 11, où la compatibilité matérielle joue un rôle important. Un script PowerShell conçu pour évaluer cette compatibilité simplifie le processus et fournit des informations claires et exploitables.
Contexte
Le script en question est un outil PowerShell conçu pour évaluer l’état de préparation d’un ordinateur à une mise à niveau vers Windows 11. Dans le secteur des technologies de l’information, il est essentiel de s’assurer que le matériel est compatible avec les nouveaux logiciels. C’est particulièrement vrai pour les fournisseurs de services gérés (MSP) qui supervisent plusieurs clients disposant d’environnements matériels différents. Le script automatise le processus d’évaluation, ce qui permet de gagner du temps et de réduire le risque d’erreurs manuelles.
Le script :
#Requires -Version 5.1 <# .SYNOPSIS Checks the computer if is capable of upgrading to Windows 11. .DESCRIPTION Checks the computer if is capable of upgrading to Windows 11 and returns the results. .EXAMPLE No Parameters Needed. Will return an exit code of 0 if the computer is capable. Will return an exit code of 1 if the computer is not capable. Will return an exit code of -1 if the computer is undetermined. Will return an exit code of -2 if the computer failed to run the check. .EXAMPLE -CustomField "Windows11Upgrade" Will attempt to set the example custom field named "Windows11Upgrade" with one of the possible results: Capable Not Capable Undetermined Failed To Run .NOTES Minimum OS Architecture Supported: Windows 10 Release Notes: Renamed script and added Script Variable support. Also replaced Get-WmiObject with Get-CimInstance. By using this script, you indicate your acceptance of the following legal terms as well as our Terms of Use at https://www.ninjaone.com/terms-of-use. Ownership Rights: NinjaOne owns and will continue to own all right, title, and interest in and to the script (including the copyright). NinjaOne is giving you a limited license to use the script in accordance with these legal terms. Use Limitation: You may only use the script for your legitimate personal or internal business purposes, and you may not share the script with another party. Republication Prohibition: Under no circumstances are you permitted to re-publish the script in any script library or website belonging to or under the control of any other software provider. Warranty Disclaimer: The script is provided “as is” and “as available”, without warranty of any kind. NinjaOne makes no promise or guarantee that the script will be free from defects or that it will meet your specific needs or expectations. Assumption of Risk: Your use of the script is at your own risk. You acknowledge that there are certain inherent risks in using the script, and you understand and assume each of those risks. Waiver and Release: You will not hold NinjaOne responsible for any adverse or unintended consequences resulting from your use of the script, and you waive any legal or equitable rights or remedies you may have against NinjaOne relating to your use of the script. EULA: If you are a NinjaOne customer, your use of the script is subject to the End User License Agreement applicable to you (EULA). #> [CmdletBinding()] param ( [Parameter()] [string]$CustomField ) begin { if ($env:customFieldName -and $env:customFieldName -notlike "null") { $CustomField = $env:customFieldName } function Get-HardwareReadiness() { # Modified copy of https://aka.ms/HWReadinessScript minus the signature, as of 7/26/2023. # Only modification was replacing Get-WmiObject with Get-CimInstance for PowerShell 7 compatibility # Source Microsoft article: https://techcommunity.microsoft.com/t5/microsoft-endpoint-manager-blog/understanding-readiness-for-windows-11-with-microsoft-endpoint/ba-p/2770866 #============================================================================================================================= # # Script Name: HardwareReadiness.ps1 # Description: Verifies the hardware compliance. Return code 0 for success. # In case of failure, returns non zero error code along with error message. # This script is not supported under any Microsoft standard support program or service and is distributed under the MIT license # Copyright (C) 2021 Microsoft Corporation # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, # modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software # is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #============================================================================================================================= $exitCode = 0 [int]$MinOSDiskSizeGB = 64 [int]$MinMemoryGB = 4 [Uint32]$MinClockSpeedMHz = 1000 [Uint32]$MinLogicalCores = 2 [Uint16]$RequiredAddressWidth = 64 $PASS_STRING = "PASS" $FAIL_STRING = "FAIL" $FAILED_TO_RUN_STRING = "FAILED TO RUN" $UNDETERMINED_CAPS_STRING = "UNDETERMINED" $UNDETERMINED_STRING = "Undetermined" $CAPABLE_STRING = "Capable" $NOT_CAPABLE_STRING = "Not capable" $CAPABLE_CAPS_STRING = "CAPABLE" $NOT_CAPABLE_CAPS_STRING = "NOT CAPABLE" $STORAGE_STRING = "Storage" $OS_DISK_SIZE_STRING = "OSDiskSize" $MEMORY_STRING = "Memory" $SYSTEM_MEMORY_STRING = "System_Memory" $GB_UNIT_STRING = "GB" $TPM_STRING = "TPM" $TPM_VERSION_STRING = "TPMVersion" $PROCESSOR_STRING = "Processor" $SECUREBOOT_STRING = "SecureBoot" $I7_7820HQ_CPU_STRING = "i7-7820hq CPU" # 0=name of check, 1=attribute checked, 2=value, 3=PASS/FAIL/UNDETERMINED $logFormat = '{0}: {1}={2}. {3}; ' # 0=name of check, 1=attribute checked, 2=value, 3=unit of the value, 4=PASS/FAIL/UNDETERMINED $logFormatWithUnit = '{0}: {1}={2}{3}. {4}; ' # 0=name of check. $logFormatReturnReason = '{0}, ' # 0=exception. $logFormatException = '{0}; ' # 0=name of check, 1= attribute checked and its value, 2=PASS/FAIL/UNDETERMINED $logFormatWithBlob = '{0}: {1}. {2}; ' # return returnCode is -1 when an exception is thrown. 1 if the value does not meet requirements. 0 if successful. -2 default, script didn't run. $outObject = @{ returnCode = -2; returnResult = $FAILED_TO_RUN_STRING; returnReason = ""; logging = "" } # NOT CAPABLE(1) state takes precedence over UNDETERMINED(-1) state function Private:UpdateReturnCode { param( [Parameter(Mandatory = $true)] [ValidateRange(-2, 1)] [int] $ReturnCode ) Switch ($ReturnCode) { 0 { if ($outObject.returnCode -eq -2) { $outObject.returnCode = $ReturnCode } } 1 { $outObject.returnCode = $ReturnCode } -1 { if ($outObject.returnCode -ne 1) { $outObject.returnCode = $ReturnCode } } } } $Source = @" using Microsoft.Win32; using System; using System.Runtime.InteropServices; public class CpuFamilyResult { public bool IsValid { get; set; } public string Message { get; set; } } public class CpuFamily { [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public ushort ProcessorArchitecture; ushort Reserved; public uint PageSize; public IntPtr MinimumApplicationAddress; public IntPtr MaximumApplicationAddress; public IntPtr ActiveProcessorMask; public uint NumberOfProcessors; public uint ProcessorType; public uint AllocationGranularity; public ushort ProcessorLevel; public ushort ProcessorRevision; } [DllImport("kernel32.dll")] internal static extern void GetNativeSystemInfo(ref SYSTEM_INFO lpSystemInfo); public enum ProcessorFeature : uint { ARM_SUPPORTED_INSTRUCTIONS = 34 } [DllImport("kernel32.dll")] [return: MarshalAs(UnmanagedType.Bool)] static extern bool IsProcessorFeaturePresent(ProcessorFeature processorFeature); private const ushort PROCESSOR_ARCHITECTURE_X86 = 0; private const ushort PROCESSOR_ARCHITECTURE_ARM64 = 12; private const ushort PROCESSOR_ARCHITECTURE_X64 = 9; private const string INTEL_MANUFACTURER = "GenuineIntel"; private const string AMD_MANUFACTURER = "AuthenticAMD"; private const string QUALCOMM_MANUFACTURER = "Qualcomm Technologies Inc"; public static CpuFamilyResult Validate(string manufacturer, ushort processorArchitecture) { CpuFamilyResult cpuFamilyResult = new CpuFamilyResult(); if (string.IsNullOrWhiteSpace(manufacturer)) { cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = "Manufacturer is null or empty"; return cpuFamilyResult; } string registryPath = "HKEY_LOCAL_MACHINE\\Hardware\\Description\\System\\CentralProcessor\\0"; SYSTEM_INFO sysInfo = new SYSTEM_INFO(); GetNativeSystemInfo(ref sysInfo); switch (processorArchitecture) { case PROCESSOR_ARCHITECTURE_ARM64: if (manufacturer.Equals(QUALCOMM_MANUFACTURER, StringComparison.OrdinalIgnoreCase)) { bool isArmv81Supported = IsProcessorFeaturePresent(ProcessorFeature.ARM_SUPPORTED_INSTRUCTIONS); if (!isArmv81Supported) { string registryName = "CP 4030"; long registryValue = (long)Registry.GetValue(registryPath, registryName, -1); long atomicResult = (registryValue >> 20) & 0xF; if (atomicResult >= 2) { isArmv81Supported = true; } } cpuFamilyResult.IsValid = isArmv81Supported; cpuFamilyResult.Message = isArmv81Supported ? "" : "Processor does not implement ARM v8.1 atomic instruction"; } else { cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = "The processor isn't currently supported for Windows 11"; } break; case PROCESSOR_ARCHITECTURE_X64: case PROCESSOR_ARCHITECTURE_X86: int cpuFamily = sysInfo.ProcessorLevel; int cpuModel = (sysInfo.ProcessorRevision >> 8) & 0xFF; int cpuStepping = sysInfo.ProcessorRevision & 0xFF; if (manufacturer.Equals(INTEL_MANUFACTURER, StringComparison.OrdinalIgnoreCase)) { try { cpuFamilyResult.IsValid = true; cpuFamilyResult.Message = ""; if (cpuFamily >= 6 && cpuModel <= 95 && !(cpuFamily == 6 && cpuModel == 85)) { cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = ""; } else if (cpuFamily == 6 && (cpuModel == 142 || cpuModel == 158) && cpuStepping == 9) { string registryName = "Platform Specific Field 1"; int registryValue = (int)Registry.GetValue(registryPath, registryName, -1); if ((cpuModel == 142 && registryValue != 16) || (cpuModel == 158 && registryValue != 8)) { cpuFamilyResult.IsValid = false; } cpuFamilyResult.Message = "PlatformId " + registryValue; } } catch (Exception ex) { cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = "Exception:" + ex.GetType().Name; } } else if (manufacturer.Equals(AMD_MANUFACTURER, StringComparison.OrdinalIgnoreCase)) { cpuFamilyResult.IsValid = true; cpuFamilyResult.Message = ""; if (cpuFamily < 23 || (cpuFamily == 23 && (cpuModel == 1 || cpuModel == 17))) { cpuFamilyResult.IsValid = false; } } else { cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = "Unsupported Manufacturer: " + manufacturer + ", Architecture: " + processorArchitecture + ", CPUFamily: " + sysInfo.ProcessorLevel + ", ProcessorRevision: " + sysInfo.ProcessorRevision; } break; default: cpuFamilyResult.IsValid = false; cpuFamilyResult.Message = "Unsupported CPU category. Manufacturer: " + manufacturer + ", Architecture: " + processorArchitecture + ", CPUFamily: " + sysInfo.ProcessorLevel + ", ProcessorRevision: " + sysInfo.ProcessorRevision; break; } return cpuFamilyResult; } } "@ # Storage try { $osDrive = Get-CimInstance -Class Win32_OperatingSystem | Select-Object -Property SystemDrive $osDriveSize = Get-CimInstance -Class Win32_LogicalDisk -Filter "DeviceID='$($osDrive.SystemDrive)'" | Select-Object @{Name = "SizeGB"; Expression = { $_.Size / 1GB -as [int] } } if ($null -eq $osDriveSize) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $STORAGE_STRING $outObject.logging += $logFormatWithBlob -f $STORAGE_STRING, "Storage is null", $FAIL_STRING $exitCode = 1 } elseif ($osDriveSize.SizeGB -lt $MinOSDiskSizeGB) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $STORAGE_STRING $outObject.logging += $logFormatWithUnit -f $STORAGE_STRING, $OS_DISK_SIZE_STRING, ($osDriveSize.SizeGB), $GB_UNIT_STRING, $FAIL_STRING $exitCode = 1 } else { $outObject.logging += $logFormatWithUnit -f $STORAGE_STRING, $OS_DISK_SIZE_STRING, ($osDriveSize.SizeGB), $GB_UNIT_STRING, $PASS_STRING UpdateReturnCode -ReturnCode 0 } } catch { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormat -f $STORAGE_STRING, $OS_DISK_SIZE_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } # Memory (bytes) try { $memory = Get-CimInstance Win32_PhysicalMemory | Measure-Object -Property Capacity -Sum | Select-Object @{Name = "SizeGB"; Expression = { $_.Sum / 1GB -as [int] } } if ($null -eq $memory) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $MEMORY_STRING $outObject.logging += $logFormatWithBlob -f $MEMORY_STRING, "Memory is null", $FAIL_STRING $exitCode = 1 } elseif ($memory.SizeGB -lt $MinMemoryGB) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $MEMORY_STRING $outObject.logging += $logFormatWithUnit -f $MEMORY_STRING, $SYSTEM_MEMORY_STRING, ($memory.SizeGB), $GB_UNIT_STRING, $FAIL_STRING $exitCode = 1 } else { $outObject.logging += $logFormatWithUnit -f $MEMORY_STRING, $SYSTEM_MEMORY_STRING, ($memory.SizeGB), $GB_UNIT_STRING, $PASS_STRING UpdateReturnCode -ReturnCode 0 } } catch { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormat -f $MEMORY_STRING, $SYSTEM_MEMORY_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } # TPM try { $tpm = Get-Tpm if ($null -eq $tpm) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $TPM_STRING $outObject.logging += $logFormatWithBlob -f $TPM_STRING, "TPM is null", $FAIL_STRING $exitCode = 1 } elseif ($tpm.TpmPresent) { $tpmVersion = Get-CimInstance -Class Win32_Tpm -Namespace root\CIMV2\Security\MicrosoftTpm | Select-Object -Property SpecVersion if ($null -eq $tpmVersion.SpecVersion) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $TPM_STRING $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, "null", $FAIL_STRING $exitCode = 1 } $majorVersion = $tpmVersion.SpecVersion.Split(",")[0] -as [int] if ($majorVersion -lt 2) { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $TPM_STRING $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, ($tpmVersion.SpecVersion), $FAIL_STRING $exitCode = 1 } else { $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, ($tpmVersion.SpecVersion), $PASS_STRING UpdateReturnCode -ReturnCode 0 } } else { if ($tpm.GetType().Name -eq "String") { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f $tpm } else { UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $TPM_STRING $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, ($tpm.TpmPresent), $FAIL_STRING } $exitCode = 1 } } catch { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormat -f $TPM_STRING, $TPM_VERSION_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } # CPU Details $cpuDetails; try { $cpuDetails = @(Get-CimInstance -Class Win32_Processor)[0] if ($null -eq $cpuDetails) { UpdateReturnCode -ReturnCode 1 $exitCode = 1 $outObject.returnReason += $logFormatReturnReason -f $PROCESSOR_STRING $outObject.logging += $logFormatWithBlob -f $PROCESSOR_STRING, "CpuDetails is null", $FAIL_STRING } else { $processorCheckFailed = $false # AddressWidth if ($null -eq $cpuDetails.AddressWidth -or $cpuDetails.AddressWidth -ne $RequiredAddressWidth) { UpdateReturnCode -ReturnCode 1 $processorCheckFailed = $true $exitCode = 1 } # ClockSpeed is in MHz if ($null -eq $cpuDetails.MaxClockSpeed -or $cpuDetails.MaxClockSpeed -le $MinClockSpeedMHz) { UpdateReturnCode -ReturnCode 1; $processorCheckFailed = $true $exitCode = 1 } # Number of Logical Cores if ($null -eq $cpuDetails.NumberOfLogicalProcessors -or $cpuDetails.NumberOfLogicalProcessors -lt $MinLogicalCores) { UpdateReturnCode -ReturnCode 1 $processorCheckFailed = $true $exitCode = 1 } # CPU Family Add-Type -TypeDefinition $Source $cpuFamilyResult = [CpuFamily]::Validate([String]$cpuDetails.Manufacturer, [uint16]$cpuDetails.Architecture) $cpuDetailsLog = "{AddressWidth=$($cpuDetails.AddressWidth); MaxClockSpeed=$($cpuDetails.MaxClockSpeed); NumberOfLogicalCores=$($cpuDetails.NumberOfLogicalProcessors); Manufacturer=$($cpuDetails.Manufacturer); Caption=$($cpuDetails.Caption); $($cpuFamilyResult.Message)}" if (!$cpuFamilyResult.IsValid) { UpdateReturnCode -ReturnCode 1 $processorCheckFailed = $true $exitCode = 1 } if ($processorCheckFailed) { $outObject.returnReason += $logFormatReturnReason -f $PROCESSOR_STRING $outObject.logging += $logFormatWithBlob -f $PROCESSOR_STRING, ($cpuDetailsLog), $FAIL_STRING } else { $outObject.logging += $logFormatWithBlob -f $PROCESSOR_STRING, ($cpuDetailsLog), $PASS_STRING UpdateReturnCode -ReturnCode 0 } } } catch { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormat -f $PROCESSOR_STRING, $PROCESSOR_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } # SecureBoot try { $isSecureBootEnabled = Confirm-SecureBootUEFI $outObject.logging += $logFormatWithBlob -f $SECUREBOOT_STRING, $CAPABLE_STRING, $PASS_STRING UpdateReturnCode -ReturnCode 0 } catch [System.PlatformNotSupportedException] { # PlatformNotSupportedException "Cmdlet not supported on this platform." - SecureBoot is not supported or is non-UEFI computer. UpdateReturnCode -ReturnCode 1 $outObject.returnReason += $logFormatReturnReason -f $SECUREBOOT_STRING $outObject.logging += $logFormatWithBlob -f $SECUREBOOT_STRING, $NOT_CAPABLE_STRING, $FAIL_STRING $exitCode = 1 } catch [System.UnauthorizedAccessException] { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormatWithBlob -f $SECUREBOOT_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } catch { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormatWithBlob -f $SECUREBOOT_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } # i7-7820hq CPU try { $supportedDevices = @('surface studio 2', 'precision 5520') $systemInfo = @(Get-CimInstance -Class Win32_ComputerSystem)[0] if ($null -ne $cpuDetails) { if ($cpuDetails.Name -match 'i7-7820hq cpu @ 2.90ghz') { $modelOrSKUCheckLog = $systemInfo.Model.Trim() if ($supportedDevices -contains $modelOrSKUCheckLog) { $outObject.logging += $logFormatWithBlob -f $I7_7820HQ_CPU_STRING, $modelOrSKUCheckLog, $PASS_STRING $outObject.returnCode = 0 $exitCode = 0 } } } } catch { if ($outObject.returnCode -ne 0) { UpdateReturnCode -ReturnCode -1 $outObject.logging += $logFormatWithBlob -f $I7_7820HQ_CPU_STRING, $UNDETERMINED_STRING, $UNDETERMINED_CAPS_STRING $outObject.logging += $logFormatException -f "$($_.Exception.GetType().Name) $($_.Exception.Message)" $exitCode = 1 } } Switch ($outObject.returnCode) { 0 { $outObject.returnResult = $CAPABLE_CAPS_STRING } 1 { $outObject.returnResult = $NOT_CAPABLE_CAPS_STRING } -1 { $outObject.returnResult = $UNDETERMINED_CAPS_STRING } -2 { $outObject.returnResult = $FAILED_TO_RUN_STRING } } $outObject | ConvertTo-Json -Compress } } process { $Result = Get-HardwareReadiness | Select-Object -Unique | ConvertFrom-Json if ($CustomField -and -not [string]::IsNullOrEmpty($CustomField) -and -not [string]::IsNullOrWhiteSpace($CustomField)) { Switch ($Result.returnCode) { 0 { Ninja-Property-Set -Name $CustomField -Value "Capable" } 1 { Ninja-Property-Set -Name $CustomField -Value "Not Capable" } -1 { Ninja-Property-Set -Name $CustomField -Value "Undetermined" } -2 { Ninja-Property-Set -Name $CustomField -Value "Failed To Run" } default { Ninja-Property-Set -Name $CustomField -Value "Unknown" } } } # Print Return Result Write-Host "Result: $($Result.returnResult)" exit $Result.returnCode } end { }
Accédez à plus de 700 scripts dans le Dojo NinjaOne
Description détaillée
Le script fonctionne en plusieurs étapes clés :
- Configuration de l’environnement: Il commence par définir des paramètres et des variables d’environnement. Il vérifie si un nom de champ personnalisé est fourni et initialise les fonctions.
- Fonction de vérification de la préparation du matériel: Le cœur du script est la fonction Get-HardwareReadiness. Cette fonction vérifie divers aspects matériels tels que le stockage, la mémoire, le TPM (Trusted Platform Module), les détails de l’unité centrale et l’état de l’amorçage sécurisé. Il utilise des cmdlets PowerShell comme Get-CimInstance et des blocs de code personnalisés pour des vérifications détaillées.
- Logique d’évaluation: Pour chaque composant matériel, le script vérifie si le système répond à la configuration minimale requise pour Windows 11. Ces contrôles portent sur la taille du stockage, la capacité de mémoire, la version de la TPM, l’architecture et la vitesse du processeur, ainsi que la capacité de démarrage sécurisé.
- Manipulation des résultats: Sur la base de ces vérifications, le script définit un code de retour et un résultat, qui peuvent être ‘Capable’, ‘Not Capable’, ‘Undetermined’, ou ‘Failed To Run’.
- Attribution de champs personnalisés: Si un paramètre de champ personnalisé est utilisé, le script attribue le résultat à ce champ.
- Résultat : Enfin, le script affiche le résultat et se termine avec le code de retour correspondant.
Cas d’utilisation potentiels
Une entreprise MSP peut utiliser ce script pour évaluer rapidement les machines des clients qui sont prêtes pour une mise à niveau vers Windows 11. Par exemple, avant de déployer une mise à niveau à l’échelle de l’entreprise, l’entreprise MSP peut exécuter ce script sur toutes les machines afin d’identifier celles qui ont besoin d’une mise à niveau matérielle.
Comparaisons
Traditionnellement, la vérification de la compatibilité du système d’exploitation impliquait de vérifier manuellement les spécifications du matériel ou d’utiliser des outils distincts. Ce script consolide ces contrôles en un seul processus automatisé, offrant efficacité et précision par rapport aux méthodes manuelles.
FAQ
Q1 : Ce script est-il compatible avec toutes les versions de Windows ?
A1 : Le script est conçu pour les systèmes Windows 10 ou plus récents.
Q2 : Que se passe-t-il si la puce TPM n’est pas présente ?
A2 : Le script renverra un état “Not Capable” si la puce TPM est manquante ou incompatible.
Q3 : Ce script peut-il être exécuté sur plusieurs machines à la fois ?
A3 : Oui, il peut être intégré dans des flux d’automatisation plus importants pour fonctionner sur plusieurs machines.
Implications
Les résultats de ce script ont des implications importantes pour la sécurité et la planification informatique. Les machines non conformes risquent de présenter des failles de sécurité, et la planification des mises à niveau du matériel devient cruciale.
Recommandations
- Exécutez régulièrement ce script dans le cadre des routines de maintenance.
- Utilisez les résultats pour la planification stratégique des mises à niveau du matériel.
- Intégrez le script dans des flux de travail de gestion informatique plus larges pour plus d’efficacité.
Conclusion :
La transition vers de nouveaux systèmes d’exploitation tels que Windows 11 est une étape cruciale dans le maintien d’environnements informatiques actualisés et sécurisés. Des outils comme NinjaOne, qui rationalisent et automatisent les processus de gestion informatique, deviennent inestimables dans ce contexte. En incorporant des scripts tels que celui présenté ici, les MSP et les professionnels de l’informatique peuvent assurer une transition efficace et en douceur vers Windows 11, tout en conservant des systèmes sécurisés et à jour.